B.Sc. (Semester - 6)
Course: USO6CPHY21
Quantum Mechanics
UNIT-IV  Exactly Soluble Eigen value Problem
The Angular Momentum Operators:
The angular momentum of the particle about origin O is expressed as
L=7xp
Where, 7(x, y,z) and B(px. by, p2)-
Now,

[P x (7 x p)] i

(7@ -p) - -

7@ P) -7 RN
S P=Erpt - ER@ND NT

Therefore, equation (4.1) be_co?hgs,

A OF-5)2 + i@ p)
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'ha+ 'ha
zih o=+ xih o

. d 0
—x ih @ +y ih ™
5 d d
by s
The transformation equations are
x =71 sinBcos ¢
y=1 sinesinq)]
z=71 cos0
We have,
y r sinOsing

2 i = —tand & N

x rsinBcosd cosd

» ¢ =tan™? (%)

Z=r cos® — cosB =\

. 0 =cos™?! (?Z—‘)

r? = x? +y
r—(x +y +zz)/2

on [4 9}, we get
z

(x% + y2 + z2) /2

“oro 089 0990

~ xeir | DoiD Bxid
gra 0900 9p

ay 6yar 6y66 ay 6(1)
9 aro 0909 93 d
9% or PEaD P im

r?=x?+y*+22

) 6r_2
N rax_ *

dr x rsinBcosd

dx r r

ox sin© cos ¢
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Similarly,

Sor y o
T = sinOsin¢g

.8r

and —=

= = 5]
B Cos

T
z
I

1 Z

(x2 + y2 + z2) /2

0 = cos™

E 1

Be_zx(x2+y2+zz)l/2 1

- a - {52 + yz (xz i }’2 + szq/z
08 Zx 1

. a: .—x2+y2(x2+y2 —|—ZZ)

08 _rcos® rsinBcosd 1
T ox r sin©
06 cosB cosd

Tax T T v

Similarly, '
06 cosO sing |

and,

Also we have,

_)=_L
x% 4y
N 0  rsinBcos¢  sinb

"9x  r?sin28  r sin®
_ 6(1)_ sin O

C9x __r sin ©

dd  cosd

a_ 7 sin®
d¢
and, E—O

put all these values in equations (4.11), (4.12) & (4.13), we get

a o ad - o d sin® o
ax_sm COSq’ar L08 COS¢6‘8 r sin@do

Similarly,
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6__8_ 6+cosecos¢6+cos¢ d
L r 30 rsin6dd

B 86 sin® 4
9z "+ o6

ey o a]
x =i ¥ 2 Zay

j 'h[ .6 sin &) 88 smea)
» = —Ih|(r sinBsin¢ (cos 6?‘ T

cos© cos¢ d i cos ¢ 6)]
r 06  r sinBdd,

— (r cos0) (sm Osin 5 +
; ; : 0 . . ad
L, =—ih [r sin O sin ¢ cos Ba — sin?@ sin ¢ i sin© cos esln (;b—-

d cosBcosd d
— c0s?0 sindp— q)—]

96 sin® ad
d
—Lh[—smd)—— cos ¢ COteacp

a
:ih[sin(])a + cotBcosPp — Fry

Similarly,

a a S .,
L, =ih [—cos cb% + cotOsind —z, )

0%l )
= —ih %
This gives operator for L,
We have, o
= r2p? — (- $)* + b P)
Now,
rzpz — _y2R2y2

And,
=7 (—ihV) = —ih(7 - V)
We kno__.w that,

r? = x% 4 y? + 72

0, , 0
ay " ““oz
) ) 2

= tyg,t a—( +jy +kz)-
T =Xt yootz ix+jy+kz
6

e
rar
d

L V—rg

Using equation (4.29) in (4.28), we get
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o o O
¥ - = — il
D L?"ar

@FPE=F DG p)
= (—ihr %) (—ihr %)
e[ 5]

K d
. (?—.’ . ﬁ)Z — _h2r2 ar _ hZ a,r.
Hence operator L? can be written as,
a? a d
= 2120 W22 — B — 4 B —
or? or
2
= —r2h?V? 4 h2r? 6_ +2 1‘12?‘i
ar? or
d d
S 2h2v2 hZ_ [ 2_]
r L or 4 or

a a ; : :'.:"ﬂ'
2 _ _EK? 2y _ 27 . W
L - h [r V a?‘ (T a?')] a & .“ (4'30)

Substituting the value of operator V? in spherical polar.c-g\s_br;c'_ﬁn;afféﬂs we get,

5 e G 216‘(26) 1 a( 83)1 02 6(26)
B “rzar\” ar) T2 51n868 P a8y r2sin’8dd?| adr " or

, 1 9
o I? = —h? l - (431)

sinB 96 sin 6@ smze a2
This is expression for L? operator |n sp erlcal polar coordinates.

The Eigen Value Equation‘for L% Sé'paration I
The eigen value eglatich isefvén by

operator
g\ Heigen function and
= eigen value

L> v(8,d) = Ah? (0, d)
Thls s the eigen value equation for L? operator.
v(8, $) — eigen function of L2
Ah? > eigen value of L?
Here, we have used the Ah? for the eigen value parameter of L? operator.

0 | 25 (50 35) + s | YOO = WO (434
sin8 a0 i 00/  sin2f dd? v(6,d) = v(8,¢ :a(4.34)

To solve eigen value equation L?, we use the method of separation of variable.
Let,

v(0,d) = 0(0) P(d)
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Hence, equation (4.34) becomes

h? 1 9 '96 1 o a(g) o = AR? [6(8) @
= [sinf?@(sm @)4‘%@][ (6) ®(d)] = [8(6) @ ()]

O () a 0(0) @
lsm& 66( i 6_9( ))l sinZ@ 6(1)2 (D(q)) =210(8) (d)

we get,

2
Multiplying both sides by o(8) @E(ids)

[:;; aag (sm 6 —9(9))] — ﬁ(ﬁ? (¢) = Asin?

. 1 62¢()—A'28+5m66( 868(9))
- b sin IO sin Y

d(P) 092 . \

The L.H.S of this eguation is independent of 8 and R.H.S is mdependent of c]) “There
equality implies that both sides must be independent of 8 & ¢, and hence both srdes must be
equal to some constant m? ' 4
. sinf d (

d ?:';.\_
10 a0 sm9—9(9))+ﬂsm9 m N

de

1 d*d(p)

T o(p) do?
o(a)
inZg*

and, =

Multiplying equation {4.37) by we get

L4, d e\ N\
51n9d9(5m9_6(9)) ( ‘1 29 e =1

Admissibility Conditions on Soiutlons "Eigen Values:
We know that,

dzfl”(fiz)

N

ion of equation (4.40)
« \N D(p) = em® and O(Pp) = e Mo
The wave functlon should be finite and single valued. This is known as admissibility
corithtlons Since values of ¢ differing by integer multiplies of 2r refer to the same physical
pomt, these solutions will satisfy the condition of single-valued ness only if
emd — eun(c])+27r)
n el = .. (4.41)
~ cos(2mm) + i sin(2mm) = 1 o (4.42)
When 2mnr = 0, 2m, 4m, .... above equation will be satisfied.
m= L 42,0
These are the possible values of m.
The above condition will satisfy if it is a real integer.
The norm is given by
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[ o @ o@ydr=1
Here,
D(p) = Ae™®
and, O (p) = A* g~imd

Substituting these values in above equation, we get
21

f A eTimd g eimd g = 1

0

2T
PVIE f ddp=1
Q

& |Al% 2= 1

~ The normalized function @ is given by
1 .
0] = pintd
@) V2m
() equation is given by

1 d ( 0o d 0(8)
siHGE St E )+

To solve 8(8) equation, suppose cos £

N\ - sin?8 = 1 — cos?6
. sin?8 =1 — w?
Substitditing these values in equation (4.45), we get
2

—i[m_ 2(— 'neﬁ)]+ FY
da R R 1—
2

%[\/l—wzx\/l—aﬂ%] +la-%le(9):0

2

IG(Q)=O

2

d do
wr B o Pl =
U dw [(1 @ )dw] +l/1 1—~ww?

Take the solution 8(8) = P(w)

19(6‘) =0
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d 1 - w?
P dP m?
dwz_zw@ +lﬂ_1—a}2
The solution of this polynomial equation is
Plw)=(1-w?)*K(w) ,a>0
Differentiate with respect to w
dP

o d ,. dP(w) m? B
..%l(l—w) = l+lfl— ]P(w)—o
dz

s (11— w?) ]P(w) =90

L 1-0) k@) a (- 0D (-20)
dw dw

daP dK
— i e _ _ 2ya-1
- (1—w*") T 2awK(w)a(l—w)
d?pP d’K
— (1 - w?)® Toit s @ (1—w?)* ' (—2w)
—2awkK(@) (a—1) (1 - 0?)*2(-2w) - ZaK(cu)(l .

dK
—2aw— (1 — w?)e1
dw

d?K dK -,
% T Zawa (1—w>)* 1+ 4:aEa 1)@%‘}{((1)) (1 - w?)??

dKk &
o _ea2ya—1 _ _—
2aK(w) (1 — w*) 2aw dw(

' de dK =
b= = (1= 0% o= — 4o —= (1 - ¥ N 4d(a — DK (W) (1= 0?2

— 2aK(w) 1 - 0?1 ) I e (4:49)
Substituting equations (4.47), (4.48) &{4.49)in equation (4.46), we get

’ ]P(w):{)

w?)

— w2

faw— (1 — 01" + da(a - DK () (1~ 02

+| —11}2] (1 - @) K(w) =0

2

2

K aK
s — pp2ya - 2 _ ..2ya-1
702 4aw(l — w?) 75 + 4a(a — Nw?K(w) (1 — w?)

dK
—2aK(w) (1 — w?)* = 2w(l — wz)am —4aw’K(w) (1 — w?)e !

(1 s wZ)a+1

2

1—w?
Dividing throughout by (1 — w?)%, we get

+ A1 — w®»)*K(w) — (1-w®)*K(w)=0
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d’K dK  4ala — DNw?K(w) dK  4aw?K(w)
a1l — @) —— — daw— — 2aK(w) — 20— — ————~
( w)dcuz awdcu+ 1—w ak(q) wdcu 1—w

+ 1K (w) — K(w)=10

1—w?
2

dw?
=0

4a’(w?>—1)  4a? m?

2 _
w®) 1— w? 1 — w? 1—w2+AK(w)

dK |
—2w(a+1)—+|-2a+
dw |

2

_ 3y A°K
“l— )dwz

2w (2 +1dK+-2 4a® + 4a” m + A|K =0
(24 )dcu i 4 ¢ 1—w? 1-—w? (co)\.-{_—__

2 2 2

,. a*K dK 4a* —m ~ ¢
A (1 —w?) —2wRa+1)—+|-2a—4a* +———+ 1| K(w) = Q

dw? dw 1— w?  \
We assume that, 4a® = |m|?

s 2a = |m|

By putting the above assumption, we get
d*K
dw? ~ \¢
The above equation can be solved by series method. The sgfies solufion of the above equation

=) T 2u(ml 4 DI = Il - ImPIR DD .(450)

is given by

- Z @, (n sy

(n+ S)(n +5—1)@nts2

put s = (0, we have

Substituting theSeyatues in equation (4.50), we get
N @, n(n - D™ ? = 20(m| + 1) Z a, (W™

+ [ lml = ImP?] ) ap™ =0

% Z a,n(n — Dw™ ? — Z a,n(n—Dw™ —2(lm|+ 1) Z a, nw™
+ = fml = m] ) ay 0" =

Z g, nin— Da™2— z & [nln—1} 4 30m]4 Din—11—m|—|mD]w®

oy .. (451)
Now, equate the coefficients of w” to zero.
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We substitute n = r + 2 in first term and n = r in the second term, we have
P+ 2D+ D" —a r—D+2(m|+ Dr— A+ |m|+ [m|?lo” =0
QP+ 2D+ D) =a [r(r—1) + 2(m| + Dr — 1+ |m| + |m|?]
COpyp P14 2lml|r +2r — A+ |m| + m|?
P (r+2)r+1)
Gy A=+ mDA 471+ |m])
T e, o+ D0 +2)
This is the recurrence relation for the series K (w)

K(w) = Z a, o"

W K(w) = ag+ ayw? + ago* + .. |
Here, a; = az; = ag =

Qr+2

If the ratio of successive coefficients — 0, then series is called cogvé-l:ge'

Ay

=0

. OGry2
~ lim
T—=oo ar
Here, r is very large, then we can neglect A.

o Qyry2

-1

) (1+)

3 i,

___-:_Sin'é"é:-.j;he coefficients tend to equality as r — o, the series K(w) diverges for w = 1.
Infactthe asymptotic behavior of the ratio in the series K(w) is exactly the same as that of
the"'r"aij_:é of successive coefficient in the expansion of series (1 — w?) ™24,

P(w) =1 - w>)*K(w)
s Pl)=(01-w?)*(1—-ew?)?
& Plw)=(1-w?)*
But, w =cosf,» w?—>1,: Plw) >

Therefore, in the neighborhood of w? = 1, not only K (w) diverges like (1 — w?) ™24,
but also P(w) would diverges like (1 — w?)™%. The only way to escape this unacceptable
singularity of P(w) at w = +1 is by terminating the series K(w) after a certain number of
terms.
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This can be done by choosing numerator in the recursion relation

—(r+ImpDr+ml+1)=20
A=+ mDr+|m|+1)

Taker =t, ¢ =0,1,2,........, where t may have any values 0,1,2, ... ... ..
A=+ |mDE+ |m|+ 1)

Assume, t + |m| =1

A=1I(l+1)
t + |m| = lis non-negative integer.
~ The eigen values of L? operator is given by

Ah% = (1 + 1) h?

The Eigen Functions of L% — Operator: [Spherical Harmomcs]
The 8 equation can be written as '@
(1 - )K" (w) - 2w(m|+ DK'(w) +[1 — ImI Imlz]f{(w. =0
But, A=1(l+ 1) ;
(1 —w)K" (@) = 20(m| + DK' () + [10 + 1) — ImI lml ]K(cu) =0 ..(4.56)
This equation is closely related to Legendre’s dlfferential equatlon

If m = 0, then it reduces to Legendre’s equation. . -115;__ A
+ (1= w)K"(0) — 20K (@) + I(l +@OR) = | . (457)
s (1 - 0P (w) — 20P/ (@) + 1(G DL () =0 .. (4.58)
Here, P;(w) is Legendre polynomlals Actyally equation (4.56) is m*" derivatives of

equation (4.57)
According to Leibnitz theorel

nt dm df m 1f2 d2f1 dm—ZfZ

Usmg Leibnitz theorem takmgm derwatlves of 1 term of equation (4.58), we get

b

» 1tterm:
m+2 m+1

d" ) N Py d" Py
dx_m[(l — &) (w)] =(1-w )d — +mC1( Za)) S + mC,(— Z)d—

dm+2p, m! dm“P m! d™p,

)dwm” U (m— (zw)dwm"'"l 2l (m— 2)'( 2) dw™

m+2P dm+1P dm

(1= )P (@)] = (1= w?) dwwé — 2mw dme‘ m(m — 1)d—m . (4.60)

(1 — 2

Similarly, m*" derivatives of 2°' term of equation (4.58) is given by
» 2" term:
—m[ZCUP;((A))] = 2w domH + mCl 2 d_m
. d‘m d?il’il+’1plI de.'_
S [2wP/(w)] = 2w FRE +2m o
» 3term:
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m

LU+ DR = 10+ 1) T o (462)

The m'" derivative of Legendre’s differential equation is

m+2 m+1 T
(1= o) 02— 20 (ml + D) L2 4 [0+ 1) = ] = fm[] —

=0 .. (4.63)
Now comparing equations (4.56) & (4.63)
K(w) is the m'" derivative of P;(w).
ki
k(@) = LD _ pma
The polynomial solution of 8 equatlon is
0(8) = (1 — w?)? K(w)
-~ 0(0) = (1 - w?)*P™(w)
Now, w = cos 8
&1 —w? =sin?g
and, 2a = |m|

|m|
S

2
[m] dm
. 6(0) = (sin‘8) 2

d
- 0(8) = sinl™lg
daz

The above equation is now see :'_o be |dent|cal with associated Legendre function. For
fixed value of m, associate Leg‘endre functlon PMw) & Pz’ (w) are mutually orthogonal.
The orthogonallty property is defined as
2 (I+m)!
20+ 1 ([ —m)!

b m):_rdw =

5”f = 1 fO?" !. = lr
5&—' — 0 fO?‘ I i {J

2 (+m)!
20+ 1 (I —m)!
, 2 (+m)!
J.|le(w)|2 4o =T T=m)]
The function 8(8) can now be written as
8(08) =N P (w) ... (4.68)
N is a normalization constant. The orthogonality property for 8(8) function defined as

J@tm(ﬂ) B,,(8) sin8 df =1 ... (4.69)
Using equation (4.68) in (4.69), we get

f’e{”(m) PM™w) dw =

- (4.67)
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—jNle(w) X N P™(w) dw = 1

NZJ‘lPIm(aJ)IZ di =31

Because, w = cos®, .~ dw = —sinf df
The limit of 8 is from 0 - 7, &w = cos 8 is from -1 to +1.
Substituting the value of integral from equation (4.67), we get

2[ 2 (+m)

21+ 1 (I —m)!

. 1/'
2 ({(+m)l]’?
21+ 1 (I —m)!

The normalized 8(8) function is given by
2 =
2 ({{+m)’?
Oim(6) = 20+ 1 (1 —m)!
The complete eigen function of L? operator is

v(B,¢) = 6(6) ©(p)

N N =

2 d+mn’

2L41 (~m)}

~v(0,d) = l

Putting v(6, @) = Y;,,(6, D), we get
2 (+m) TKZ

Yim (6, 9) = lzz +1 (- N\

This is the eigen function for L? op‘é'rai_‘:':c X s

> SPHERICAL HARMONIES: \

(—1)°P(cos B)e®

(—1)°P(cos B)e®
cost

(—1)*P}(cos B)e™®

3 172 _
- ] Pl(cos8)e'®
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5
' YZ.O = [Ejl (3(:0529 - 1)
l=2m=1

1/2

51 )

= i _13ylpl o

Yo = o 6] (=1)'P,(cosB)e
1,

wYo = [m] sin @ cos 8 e*?

Legendre polynomial is defined as

1 d! |\
2*I!;_ié';§'l

Pw) =
Form=20
() 1=0;P(w)=
(i) [=1;P)(w)=

1 a2
i) [=2; PZ(w)_@}ifz)a z(fU —1)2— = 2( w? —1)?

(4&) — 4w)

F’2 (cu) = —[3 cos?8 — 1]

> Pim(;:os 8) = sin™ () -2
{I)V$ l = 1 m=1

o Pl (cos @)

dl dl
¢ Pi(cos®) =sin —P,(cos@) = sin@ T (w) = sinf

dw
d
P}(cos§) = sin§ ——Py(cos §) = sin
> Polar Diagram: [Y,,(8, ) — 0]

Polar diagram is a diagram of spherical harmonics.

i) Yoo= [;—n]y2 ~0.28
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i ne=[2]"

7T

cosf
312
When, 8 = 0, Y, = [E] (1) = 0.488

s
When, 8 = 30", ;0 = [ 2] * (0.8660) = 0.4226

.
When, § = 45", Y, o = || "= =03450

When, 8 =30°,Y,, =0
The polar diagrams for the Y;,,(8, ) for points in the x — z plane are shown in fig.{&

I2v(0,$) = Ah? v(6, d)

Here, /11‘12 is'eigen value of L2, v(8, ¢) is eigen function of L?
The.,____ phg__—:fmcal harmonics
Yim(8,$) = 6(8) ()

1
20+ 1 (I — m)! /2 - |
4 (1 +m)!l (—1)™P™(cos §) e'™®

Ylm(gr (b) = l

(—1)™ is the phase factor.
The results of our derivation may be sum in two equations.
L*v(0, ) = Ah? v(0, d)
LZY:!m(B; (b) =1+ 1)h2 Ylm(gi (b)
B Yim (6, $) = mh ¥,,,(6, d)
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Because,

—tﬁ— [6(6) ()] = —ih 6(9)— [®()]
—ih 9(9)%(&’”@9)

—ih 0(8) im (e™?)
—ih im 6(8) ®(d)

—th— [6(6) ®($)] = mh ¥, (6, D)

Where, mh is eigen value of L, operator. L? and L, have same e:gen functldn. ,ThIS
happens if both the operator can commute each other. i
~ [P L]=0
» Concept of Space Quantlzatlon P\ _
According to it, the z — component of angular momentum L, i§ quan |zed It can take the
values L, = mh, where m is integer and is called magnetic quantum number
Equation (4.74) is the quantum mechanical statement of space quantlzatlon It says that
z — component of any momentum (L,) can take onl d rete Values which are integral
multiple of h. 3 :
In atomic Physics, the introduction of a magr?e fleld whose direction is taken as the
z —axis causes the energy of the atom tg~ change bv an amount proportional to the
z —component of its magnetic moment, whlch 15 “Felated to L,. Thus, space quantization
manifests it self through discrete changes m atomlc levels in a magnetic field. For this reason,
‘m’ is called magnetic quantum number .
[Lx, L)=ilL,
Nyl =ikiL;
v [Ls, L] =ihlL,
From the aboveseq ton ‘it follows that all the components of L commute with L? to
produce N

...}'__\_[Lx’LZ] =0, [Lyr LZ] =0, [LZ,LZ] =0

Heregmy,
' [Ly 2] =Ly, 12 + 13 + 12 ]
=L L2 1+ Ly L5 ] + [L L3 ]
[Lir 12] = [l Ll 1 F [Lgs Ly Ly | + [r 1oL ]
Now,
[A, BC] = [A, B]C + B[A, (]
o [Loy B3] = [Ly L 1oy + Ly[Ly, L 14 [Las Ly |y + Ly[ Loy Ly | + [Ly Ly 1Ly + Lp[Ly, Ly |
oLy, )]=0+0+ ihL,L,+LyihL,— ihL,L,—L,ihL,
S [l IF] = 0
Similarly, [L,,L?] =0 and [L,L*]=0
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It is because of the commutativity of L? and L, that they posses a complete set of
simultaneous eigen functions, say Y, (8, §).
[L%,L,] = 0. Hence, L? & L, have simultaneous eigen function, say ®;,,(8,¢) &

Yim (6, d)
[Ly L] =—ihL, #0
-~ Eigen function of L, # Eigen function of L,
» [LZ,LJ,] = 0. Hence, L? & L, have simultaneous eigen function, say f.,(68,$) &
Yim (6, $)
[Ly,L;] =—ih L, #0
- Eigen function of L,, # Eigen function of L,
Such functions [®,,,(8, &) & f1,,(0, )] do not coincide with Yy, (6, ¢)
i.e[LgLy] #0,[LsLy]#0 =
However, the eigen function of L? & L, [®y,(8,$)] can be expressed as the linear

combination of (21 + 1) function Y;,,(8, ) characterized by the spemflc guantum number [.
(Dlm(g (b) — aY1 1 + bylg + CY]_ 1 "'k}:' (4 75)

Angular Momentum in Stationary States of System Wlth Spherlcal Symmetry:

[One Dimension Square Well Potential]:
Consider a particle which is constrained to remams at a, constant distance 1, from the origin.

The kinetic energy of a particle

The elgen value equation for this particle is

Hv(0,$) = Ev(0, d)

Here His Hamlltoman operator and I = mr§

Hv(8,$) = Ev(0,¢)
T v(8,¢) = Ev(8,d)

The eigen value equation for L? operator is

L Ylm(& Cl:') = IU o+ 1) h? Ylm(g: Cl))
Divide on both the sides by 21

Z a+n
E Ylm(g: Cl:') = T h Ylm(er (1))
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~ The quantum mechanical energy for this particle is

1+ DR?

T .. (4.76)

The Rigid Rotator:
The system of two particles held together with a constant interparticle separation 7
and rotating about the center of mass is called rigid rotator.

[

—— Ay ——

Fig: 4.2
[{I+1)h?

holds good for a system of two par:tiii:léa. Theonly

The same result £ =
difference is that, the moment of inertia is now,
I'= urg (
Where, g = —2

T+,
This system is called rigid rotator and it serves as a good apprammate model for the
motion of diatomic molecule. \
The energy level spacing is
AE=E -E_,

The levels aig"fn t equispaced. The spacing between two levels is not constant, it
increases with ibreasen ‘1’

A Particle Jn a‘€entral Potential:
C0n3|der a partlcle moving in a central potential V (r) which is a function of radial co-ordinate

H=K.E.+P.L.
2

P
H=— +V(r
7 TV
For a system of two particles,

pZ
H=—+V({)
2p
The eigen value equation is

Hu = Eu
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p’ B
[ﬂ + V(r)l u=Fu

The operator for momentum p? is —h?V?

hZ
—— 2 =F
l Zuv +V(’r)]u u

Multiplying on both the sides by ——, we get

2u 2uE
v? u——V(r)u =—3z ¥

Viu + — [E Vr)Yu=0
Substituting the value of V2 in spherlcal polar coordinates

10 ( 5 0 + 1 0 o a) 1 92 N 2 [,9',‘"' V _ i
r2or d Br) r? smeae(sm 96/ " 72sin26 02 Uu h_-_ --_(r%]-u_

.1a(za+1 R/ 1 8 ea) 0\
" r2ar\” 6?‘) “he smeae( a6/ r sm285¢2 [ ()=

: 19 7 0 ) LZ 2 w i 479

Separating the solution in to radial and angular parts 1t can be written as,

u(r,6,¢) = R(r)Ylm(@ (1)) ... (4.80)

Equation (4.79) becomes

1 0 -
L._z a.r.( ? ar [E V(] (R(r)ylm(g (1))) =0
9 ) R(r)L2

d .
Yin (8, & zar( a—rR(’") S Vi (8,0) + 5 [E ~ V(IR (6,8) = 0

We take, \,
T, 60,) = i(1 + D*Y (6, §)
1 J 2
SECHE ( f—R(r)) 1+ DR A 2 (B — V)R in(6,9)

D|V|de throughout by R(r)}’lm(e‘? d)

1 148 l(l+1)1’12
mr_2§( = ()) g5z T [E V(] =0

Multiply by R(r), we get
14 ( ZBR(r)) Il + 1)h?
?" —

2u -
. . r;z RO+ 7 [E-VI)IR(E) =0

1 d( dR(r)) I(I + 1)h?

- =+ [E-V) - Zare | R0 =0 . (4.81)

This is known as radial equation. This equation is very useful to solve the problem of
atomic physics like Hydrogen atom.
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l(l+1)h2

In above equation is called centrifugal potential.

[(i4+1)h2
2ur?

2 h ,
Now, here [ = lﬂ- In guantum mechanics [ = LI+ 1) h

The angular momentum L2 = I({ + 1)h?
The eigen value problem for a spherically symmetric potential thus reduces to

The centrifugal potential V = , and centrifugal force F=-VV

determining for what values of E the radial wave equation (4.81) has admissible solution and
then finding the solutions.

The Radial Wave Function:

The norm of the wave functlon i, when expressed in spherical polar coordmates |s glven by

Norm = f f fu(erb)u(r@d))dr

r=06=
J‘ f R(r)}’lm(f? ) R (r)Ylm(Q cp) rzdr st d9 dq)

~ Norm = f R*(r)R(r) rzdr] f [ Ypm (9 (1))Y{m (9 d)) sin@ dg d

=0 o= 0¢-—D ™
Since, Y}, (8, §) is normalized function. It has unlt norm
» Norm = [ R*(r) R(T)T‘Qd?" =1 for a normalized function.

The expectation value of any operator. A WhICh involve r only is given by

It is useful to wrlte R X:r)

(A) fx?)A@ r2dr

L) = f 1) Ax() ridr

With thls assumption the radial wave functlon now becomes
L [ . gl I+ Dh?| x(r
O, 2[5y M+ DI 20)

r2dr dr 2ur? r

Te dr[ dr (X( ) )] l (E vir ))_i(H_ l)lxg‘r)

2 ii[rz (ld—x— Xm)] + —f(E —V(r) - a J; ) @ =0

U r2dr rdr T
1d i+ 1)] )((r)
r

o —=—|r? (r)] lhz (E-Vv()-

0

=0
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20y i ))_z(z+1) X

r —=
drz r

Therefore, the solution will be

il dz)( d)( d)(l

(1) m=-1, x(@)=const.r™
(2ym=1+1, y(r) = const.r'"!
When we put v = 0 in above solution (1), we get

1 1
g B g
xr)=r —F—a—’m
= This solution is not acceptable, since it makes R(r)diverging asr — 0.

- we are left with the other solution y(r) = r'*!, which leads to

+1
R()_@ il
?"

~ R(r) = const.r! )
Thus, any acceptable solution for angular momentum I must behave llke % Near the origin.

The Hydrogen Atom: -\

Consider the one- electron atom like hydrogen smgly |0n|2ed helium, doubly ionized
lithium, etc. This is a two-particle system, c0n5|st|ng of t' gtomic nucleus of charge Ze, and
the electron of charge —e. But if the nucleus is, suppased %o remain static, the Schrodinger
equation is just that for a single particle, The electroh’ is moving in a potential V(r) =
—Ze? /r. This is just the electrostatic potent 'é‘l"energy' of interaction of the two charges.

Actually, when the atom as a whole is at Test, it is not the nucleus, but the centre of
mass of the two-particle system whu:h'vremams static. Hence, in the kinetic energy terms in
Hamiltonian taken reduced mass u mstéad of the electron mass m,. The reduced mass is

given by the relation g = E*‘]"’”’:“/(m \-m.) where m,, is the mass of the nucleus.
i ]

Solution of The Radi ___'eqjation and Energy Levels:
The Hamultomarﬁor a conservatwe system is

The eigen value equation is

2

p =
[E + V(r)] u=Fu

The operator for momentum p? is —h2Vy?

hZ
I_ﬂ v+ V(r)lu = Eu

Multiplying on both the sides by ——, we get
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2u
Viu — h—ZV(r)u =
Viu + h—z [E —V(r)]u=0
Substituting the value of V2 in spherical polar coordinates

16(28)+ 1 6( ea)+ 1 9? Jr2 [F — V(lu = 0
rzar\’ or) " rZsineae o 26/ " r2sin20 02 “ Pl

_16(26)+1xh2 1 6( ea)+ 1 92 + [E V()]
"z \” o 2 h%\sinBdo i 48/  r?sin?0 d¢? ¢ gljesal

10,.0\ 12
. Lﬂzar("" ar)_hz ]u+—[E V()] =0

Separating the solution in to radial and angular parts it can be written as,

u(r,8,¢) = R(r)Y;, (0, $)

Equation (4.85) becomes,

0/, 0y I C\J
[1_(?.2 7)) hirz ' E—f [E - V@I (RE&in (6, $)) = 0

rZ2or\ dr
R(M)IL?
n&9¢)zm(r——(ﬂ) ;?zmmw¢0+ BN (IR (8,8) = 0
We take, |
Em49@=ﬂa+DWmﬁ9@*”
0 2
Yin(6,0) (r—ﬂ&ﬂ—uuwmz A o e — VIR Yim (8, 9)
=0
Divide throughout by R(r)}’}m(ﬁ (1))
- ; R 1)h2

R(r)+ 2—‘: [E—-V(r)R(r)=0

}éR(r) I(1 + 1)h?
ar )_ h2r2

| 2
NS (r dR(r)) 205 ver )_l(i+1)h

lR()—U

X Zar dr 2ur?
For H-atom, the coulomb potential as central potential given by
Ve Zg?
UET
Using equation (4.88) in (4.87), we get
1d dR(r 2 Ze? 11+ 1h?
1d( ,dRO)\, 2u, Ze? 1Q+1D)
rédr dr h? 2ur?

This is radial wave equation for H-atom.

lR(r) =0

Equation (6) can be solved for:
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(i) Bound states— lower energy states, responsible for binding
(ii) Unbound states— close to continuum states, higher energy states, come across in
scattering phenomena
Let us consider bound states, for which E < 0, and define the positive real parameters a and

A through

. (4.90)

, _ BuE _Z,uZez_Zez( 7 )%
TE T M Tonr T Th \T2E
Dividing equation (4.89) throughout by a2, we have
1 1d dR(r) 21 1 Ze? 1 I(1+1Dh% 1 .
a? ridr (T dr )+ h? J & o rooa? 2ur?  q? R(r)'. 0

1 1d dR(r) | [21E h? +2,uZez i 2yz(z+1)_1:12*-\;_.1.;'
hz \ 8uE

" a? ridr
dR(r) 1 2uZe? 1
("‘ )| }R
1
4

(280 [, 222 (1) 4 0N
dr AT 4

1 i(TZdR(T)) +l 1, — ( .. (491)

a’rdr dr wlr
Since a has unit of distance -inverse. We deflne dlmaehsmn’less variables p = ar and the radial
function R(r) = R(p) ;
We have,

KL+D R(p) = 0

I(£+1)lR( y=0

dp
dR(p) " 2dzR(p) [;t 1 I(I+1)
dp dp? p?
- | 2
g di(zp) + f) df;i)p) + l L M -I;l) l R(p)=0 ..(4.92)
This is dimensionless radial wave equation for H-atom.
Equation (9) is second order linear differential equation. We can get the series solution.
We examine first the behavior of R(p) in asymptotic region.
(i) When p — o0, then equation (4.92) becomes
d*R(p) R(p)
dp? 4

R(p)=0

=0
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In equation (4.92) all other terms have p- in denominator. Hence, other terms vanish.
The solution of equation (4.93) is

Rmets? .. (4.94)
As p — oo, R~e+%” — oo (the series solution becomes diverging which is not suitable) and
R~e“§p — 0, (the series converging which is suitable). Hence, series solution must have a
factor e_%p in it. Let it be written as a power factor of p.
R(p) = p' "2 L(p) .(495)

Here,
p' — power term

e_%p — take care of asymptotic behavior
L(p) — series which is to be found P
(ii) Atr — 0 (at the nucleus), i.e. p = 0. Hence, from equatron (4 95"]‘“R -0
AsR - 0,u(r,8,9) = R(r)Yim(6,$) = 0 \
Hence the probability density |¢|? — 0, as expected due to fact_that e~ —can not be
found at the nucleus. ; |
Using equation {4.95) in (4.92), we have

wl (p e 2 L(p))

p?
.. (4.96)

1 1 1
L —"D)p!?Le 2" + [}~ j_f)e_ﬁﬁ _ llpl—lLe_Ef’}

N .dL ,d°L 1 ,dL 1
i— 2‘0 —ZP L —E.O
+{l‘” PP A T P }

1 di. 3. 1
Y PR L e - —Ep}
{Ep Le 2" +p ap e 5P Le

Q-
e (p e 2 L(p))
1

d dL
=gt —— 4 2lpt 1= — gl L—Ip' L + 12pi72]
lﬂ dp2+ p dp P dp+4'0 P *

1
_lpE—ZL e 2)0

Second Term:
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d 1 dalL _1
> ple 2’ L(p) | = [2! pi2L 4+ 2ptt —— pl_lL] e 2” .. (4.98)

dp
A1 Il+1
0k o)

Third Term:

1 1
= [Api—w PP - Epf—f’—‘L] e 2 ..(16 4.99)

Adding equations (4.97), (4.98) & (4.99)
el daL. 1. 1 _1
{l(l —1)p'%Le 2° + lpt! %e 2P ——Ip!_TLe 2‘0}

dL d?L 1
{lpl lge_ip_l_p dp ——P

dlL 1 O\
_ |21 pt-2 4 91122 _ E—IL] 3 & N\
[ P TP dp . &

1
[A‘Ol 1L_ZPL_£2 i ZL

dL dL
[(Zi + D™ d,o] = dp
=0
Dividing throughout by p'~1,
d >+ U+ 1) — .0] *E [/qL s+ 1D]L(p)=0 .. (4.100)

To solve this equation, Iet us, aSSume a solutlon for L(p) in the series form:

zp* ligm zzpl_\_._?szpl 2] — p!= UL + Ap' 1L

oo

L(p) = C0+€1p+£‘2,0 + chp“‘ .. (4.101)

Since we know.;that R(p) behaves like p! for small p, L(p) must tend to a constant as
p — 0, accordi y eqbation (12). This why the series has been taken to start with a constant
term. ¢, takes re,of divergence issue at p — 0 along with p “term in equation (4.95)

Usmg equatlon (4.101) in (4.100), we have

o

)\ S(S =1 e B Z[Z(l +1) —pl ggsp*? +Z[ﬂ (I+D]cgp® =0
520

co ' [£4]

ch s(s =1 p™ +Z esspl @I+ 1) _Z s s p° +Z[ﬂ —(+D]ep®=0
s=0 5=0

s=0 5=0
Since 's’ is dummy, replace s - (s + 1) in first two-terms

Z[Cs+1 sp¥+ oy (s+ 120+ 1) pf] +ZC5[_S + (ﬂ_ _a+ 1))] % =0
N 5=0

Now, equating the coefficient of p°® to zero, we have
Corrt{S+ D+ (+ DI+ DY+ c{—s+2-1(I+1)}=0
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Al + DG+ 2+ DI+ f{(s+i+1)—-2}=0
Gy (s+I+1)-4
cs  (s+D(s+20+1)
This is recurrence relation between the coefficient ¢,".i.e.co = ¢, = c; = -

. (4.102)

In order to have finite (non-diverging series), series equation (18), higher order co-efficient
(¢,") should be progressively small and should become zero after some order. Let at s =
Smax = N ,series (19) becomes zero. (i.e. higher terms will be automatically zero)
Thus,(s+1+1) —A1=0,whens =n'

~sn+i+1) =4
Since n’, [ and 1 are integer. A will also be integer, say n.

an'+l+1=4=n
sn'=n-1-1

. (4.103)

The Anisotropic Oscillator: A\ \
Consider the harmonic oscillator in th:'i“eai{flﬁ_m“énsions with the Hamiltonian

p

2
2m 2
~H= 2——+ Em[w%xz + wiy? + wiz?] .. (4.104)

2 2

~H = — £5q00in® + -mowsy? + -mwiz?
p2

Fig: 4.3
This Hamiltonian can be broken up into a sum H + H® + H®) of Hamiltonians of 3

independent simple harmonic oscillator.

2 2 Z
oo (Pe 1 2o Py 1 22 Pz 1 32
--H—(2m+2mw1x )+(2m+2mwzy + 2m+2mw32
«H=HY 4+ H® 4 g& ... (4.105)
The time independent Schrodinger equation is
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Hu = FEu

p?
[% + V(r)l u=FEu

h2
- — g2 =
& [ 5 v +V(r)lu Eu

Multiplying on both the sides by —zh—T

2m
Viu + Y3 [E-V)]u=0

This is the Schrodinger equation of simple harmonic oscillator.

Splitting this equation in three parts.
(i)

d’u  2m

PRl

d’u  2m T,

@+ h_Z[E —Em(ulx ]u =0 |

Now, normalized energy eigen function for simple harmon_i__z-ﬁsg_iéllato“r' is

1 i %
(1) — % _
unl (x) — '—Znn!ﬁe XZHH(X)\

[E-V(x)]u=0

2nni\r

~ The normalizé@enelgy eigen value is

— e o
X ‘-.-j:.-"." dzz + F E 2 mwBZ ] u = 0
. The normalized energy eigen function is

1 2
(3) _ ze/
Up, (2) =——=e /2 Hy(2)
V2'lvm

And, normalized energy eigen value is
; 1
E® = (n3 + E) R
A complete set of eigen functions of H may be found in the form

tnymony (69,2 = U () + 257 (0) + 03 (2)
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.. (4.108)

.. (4.109)

. (4.110)

- (4.111)

.. (4112)

.. (4.113)

. (4.114)

.. (4.115)




Putting equations (4.108), (4.111) & (4.114), we get

1 2
“ Uninyng (x,y,2) = - /2 H, (x)H,(y)H,(2) . (4.116)

(V) "
m(x) um(y) U, (Z) are eigen functions of three different oscillators given by above
equations.
The energy eigen values [Enjnzng] to which uy, ,,,,belongs is given by

=EY +EP + EP

Eﬂlﬂz g ny

1 1 1
s Enln2n3 o (nl + E) h(l)l + (nz + E) hwz + (n3 + E) hwg

The Isotropic Oscillator: 1
When the oscillators is isotropic, then w, = w; = w3 = w. The'\ hré""éﬂnergy eigen
values of the isotropic oscillator is given by i '

B, = (n1 + E) hw + (nz + )ha) £ (313 )hw

= [(m +n2+nq)+2]h

N (n .5 E) hw

Here,n = ny + n, + ns
Since the energy depends only on the Sum nSn; +n; +ngin this case, the levels are
degenerate. ! '

The potential energy is given by

_1
. (4.119)

The wave functionis ¢

un;;n (1,60, 8) = Ryt (r)¥im (6, &)

The radial wave _eq\fjat_.'_

In terms of the dimensionless variables p = ar with @ = (mcu/ ) 2 takes the form

1d( dSQ) 1 I(I+1)R_O 5,50
pzdp p dp p pz - "'(' )

2mE _ 2E
h?a? " hew
R(p) behaves like p! for small p and e " /2 for large p.

R(p)=R(r) and 1 = .. (4.121)

1
sR=ple” K  (4.122)
In terms of K equation (17) is
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i A=3-=-200K=0
—§)F+3G-3-2

A=2n+3, n=1+2n
The energy eigen value is

3
En= (n+§)hw

Where,n =0,1,2, ... cev v ..

Question Bank

Multiple choice questions:

(1) Force acting on the pendulum is proportional to

(a) Velocity (b) dlsplacement
(¢) Time (d) acceleratlon

(2) Hamiltonian operator for simple harmonic oscillato'rv\ls H® Ry

@ p* 1
¥l N
%mJ’z *
(c) 2
=k
Potential of harmonic oscillator s, = —

(a) Thv

(c} Nhv €
mt energy for simple harmonic oscillator is E =
(b) lhw
2
(d) 5

Eh())

(b)
—h
E W
(d) ~ho
Energy eigen value of an isotropic oscillator is given by E =
(a) hv (b) hw

{(c) Nhv (d) (n_l_;) o

Angular momentum is defined as L =

(@) 7-p
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.. (4.124)

.. (4.125)




(c) ¥xp (d) mv
In a rigid rotator distance between two particles is
(a) Variable (b) Zero
(c) Infinite (d) constant
The quantum mechanical energy for a particle in one-dimension square well
potential is
2 2

(a) e I(l+ 1)h s I(1+ 1)h

1 . 21 5
{c) E=(£+1)h E=(£+1)h

1 21
Central potential is a function of
(a) r (b) &
(c) @ (d) rand@
Energy of an isotropic oscillator is
(a) Continues (b) Discrete
(¢} O (d) hv ™
For a rigid rotator the differences of energy levels are govern by AE =

(©) ( )hm

The energy eigen value for isotropic osul!a"éor |S-E-

{a) (n E) foo (b) . (1 + 1)h?

21
(c) (d) (1 + 1)h?

3 ;..\'._ 3 i
B _) i E=
Short Questions:

Set up the Hamilf n faf’simple harmonic oscillator
Write the dlmens__" n,less Schrodinger equation for simple harmonic oscillator
Draw the energy level diagram of simple harmaonic oscillator
Find the cnmponents of angular momentum
it _expressmn for V2 in spherical polar coordinates
W_rltt;: théxexpression of angular momentum operator L?in terms of spherical polar
gcoofdinates
i-'-'--;:i‘What Is rigid rotator? State the expression for its energy level separation. What is
'lmportance of studying rigid rotator?
“Define central potential? Write down the expression for Hamiltonian of a particle
moving in a central potential field
. Write the radial equation for a particle in central potential
10. Write the Hamiltonian for anisotropic oscillator
11. Write the energy eigen value for anisotropic oscillator
12. What is isotropic oscillator? Write down expressions for its energy

Long Questions:
1. Derive the dimension less Schrodinger equation for simple harmonic oscillator
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Set up the Hamiltonian of simple harmonic oscillator and derive the expression of its
energy eigen value

Derive the expression of angular momentum operator L%in terms of spherical polar
coordinates

Set up the Hamiltonian for a particle in one dimension square well and obtain its
energy eigen value

What is rigid rotator? Show that the spacing between two energy level is increases
with [

Derive the radial equation for a particle in central potential

Set up the Hamiltonian of anisotropic oscillator and derive its energy eigen vélue
What is an isotropic oscillator? Obtain the expression of its energy eigen saluel’
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